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In this article we present new experimental and theoretical results which were obtained
for the flow between two concentric cylinders, with the inner one rotating and in the
presence of an axial, stable density stratification. This system is characterized by two
control parameters: one destabilizing, the rotation rate of the inner cylinder; and the
other stabilizing, the stratification.

Two oscillatory linear stability analyses assuming axisymmetric flow conditions
are presented. First an eigenmode linear stability analysis is performed, using the
small-gap approximation. The solutions obtained give insight into the instability
mechanisms and indicate the existence of a confined internal gravity wave mode at
the onset of instability. In the second stability analysis, only diffusion is neglected,
predicting accurately the instability threshold as well as the critical pulsation for all
the stratifications used in the experiments.

Experiments show that the basic, purely azimuthal flow (circular Couette flow) is
destabilized through a supercritical Hopf bifurcation to an oscillatory flow of confined
internal gravity waves, in excellent agreement with the linear stability analysis. The sec-
ondary bifurcation, which takes the system to a pattern of drifting non-axisymmetric
vortices, is a saddle-node bifurcation. The proposed bifurcation diagram shows a
global bifurcation, and explains the discrepancies between previous experimental and
numerical results. For slightly larger values of the rotation rate, weakly turbulent
spectra are obtained, indicating an early appearance of weak turbulence: stationary
structures and defects coexist. Moreover, in this regime, there is a large distribution
of structure sizes. Visualizations of the next regime exhibit constant-wavelength struc-
tures and fluid exchange between neighbouring cells, similar to wavy vortices. Their
existence is explained by a simple energy argument.

The generalization of the bifurcation diagram to hydrodynamic systems with one
destabilizing and one stabilizing control parameter is discussed. A qualitative argu-
ment is derived to discriminate between oscillatory and stationary onset of instability
in the general case.

1. Introduction
Since the pioneering works of Couette (1890) and Taylor (1923), over 2000 ex-

perimental, numerical and theoretical studies have considered different aspects of
circular Couette flow (see e.g. Andereck, Liu & Swinney 1986; Di Prima & Swinney
1981). However, Taylor–Couette flow with axial density stratification has received
little attention (Thorpe 1966; Withjack & Chen 1974; Boubnov, Gledzer & Hopfinger
1995; Hua, Le Gentil & Orlandi 1997a). The study of this situation is motivated by
its possible relation to sub-thermocline equatorial jet formation which might have its
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origin in a centrifugal-type instability (Hua, Moore & Le Gentil 1997b). Stratified
Taylor–Couette flow is also an interesting dynamical system. Indeed, the transition
to chaos in extended nonlinear systems is still an open question (Manneville 1991;
Guckenheimer & Holmes 1983; Cross & Hohenberg 1993). In particular, in systems
with two control parameters, the oscillatory nature of the primary bifurcation is likely
to change the scenario (Knobloch 1997; Schöpf & Zimmermann 1993) and is just
beginning to be explored (Ashwin & Rucklidge 1998). The question of the selection
mechanism of the primary instability (stationary or oscillatory) has been addressed
for a long time (Thorpe 1966), but has never received an appropriate answer. As will
be shown in this article, a primary Hopf bifurcation can be obtained by adding a
stabilizing control parameter, a stable stratification allowing the existence of waves,
to the well-known Taylor–Couette flow (Andereck et al. 1986), with only the inner
cylinder rotating.

In the present paper new experimental and theoretical results for stably stratified
circular Couette flow are presented using an improved version of the apparatus of
Boubnov et al. (1995). These results clarify and complement substantially the recent
results reported by Boubnov et al. (1995) and Hua et al. (1997a). Boubnov et al. (1995)
established an original flow regime diagram in the space of the two control parameters
Ω and N, where Ω is the rotation rate of the inner cylinder and the buoyancy frequency
N =

√−(g/ρ0)(∂ρ/∂z) characterizes the stratification. We discuss briefly this diagram
which is reproduced from Boubnov et al. (1995) in figure 1.

When N = 0, the standard homogeneous Taylor–Couette regimes are recov-
ered, that is the azimuthal Couette flow is destabilized at a critical rotation rate
Ωc(N = 0) ' 0.2 rad s−1 (for tap water). This gives a critical Reynolds number
Rec(N = 0) ' 90, in agreement with previous results (Di Prima & Swinney 1981). At
Ωc(N = 0) stationary vortices of height equal to the gap width (Taylor vortices) appear.
For non-zero stratification, new flow regimes are observed. Their succession for fixed N
and increasing Ω is the same for all stratifications, when N > 0.4 rad s−1, except in the
turbulent regimes. For a rotation rate in domain A of the diagram, purely azimuthal
Couette flow is obtained. When, for fixed N, the rotation rate of the inner cylinder, Ω,
is increased up to a critical value Ωc(N), an unstable regime, labelled S for stratified
vortex regime, appears. The critical value Ωc(N) increases with N, reflecting the sta-
bilizing effect of the stratification. The vortices in this regime are non-axisymmetric
and flattened by the stratification, their vertical size being roughly equal to half the
gap width. The regime labelled T corresponds to the existence of vortices looking
like Taylor vortices. Between these regimes, a transition region denoted by ST exists,
where the size of the vortex structures is not well defined. By further increasing Ω, the
CT regime (Compact Taylor vortices) appears, where vortices are coupled in pairs.

The study of Hua et al. (1997a) consists of three-dimensional direct numerical
simulations of the Navier–Stokes equations with an additional equation for density.
The dimensions of the simulated flow configuration are the same as in the experi-
ments. The simulations exhibit transition values in quantitative agreement with the
experiments though there are important qualitative discrepancies for the first regimes.
For instance, the onset of the instability is shown in the numerical simulations to be
an axisymmetric oscillatory regime, created through a direct Hopf bifurcation. It is
also shown that the next transitions are mainly temporal transitions, the azimuthally
dependent part of the flow playing only a secondary role. Indeed, the transition values
and vertical length scales are very close in two- and three-dimensional simulations.
For this reason, we have performed temporal density fluctuation measurements to
study the temporal evolution of the density field in the different flow regimes.
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Figure 1. Experimental flow regimes and transitions obtained by Boubnov et al. (1995).
N = (−(g/ρ0)(∂ρ/∂z))1/2 is the buoyancy frequency and Ω is the rotation rate of the inner cylinder.

In § 2, the experimental apparatus, techniques and procedures are presented. Sec-
tion 3 is concerned with the linear stability analyses. The experimental results and
interpretation with the bifurcation diagram are presented in § 4. Further discussions
and conclusions are presented in § 5.

2. Experimental setup
2.1. Apparatus

The stratified Taylor–Couette system used in our experiments is an improved version
of the one described in Boubnov et al. (1995), and is schematically shown in figure 2. It
consists of two precision-machined Plexiglas coaxial cylinders of radii b = 52±0.1 mm
and a = 40± 0.1 mm, indicating a rather large gap: η = a/b = 0.77. The length of the
cylinders H is 573 mm giving a large aspect ratio, Γ = H/(b− a) = 48. Moreover, the
stratification decouples events in different layers (Billant & Chomaz 2000), so that
end effects are of no importance in stratified Taylor–Couette flow. The inner cylinder
is rotated by a motor (Crouzet motor, France), between 0 and 110 r.p.m. Its rotation
rate Ω is maintained constant within 0.1%. The outer cylinder as well as bottom
and top boundaries remain fixed. The cylinders are placed in a square, transparent
box filled with water, which helps to keep the system at a constant temperature,
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Figure 2. Experimental apparatus for the stratified Taylor–Couette flow and imposed stratification.

and reduces optical distortions for visualizations (water has roughly the same optical
index as Plexiglas). In the gap between the cylinders, a stable axially linear density
stratification is established by a salt solution using the ‘double-bucket’ filling method
(Oster 1965; Caton 1998). The stratification is measured by withdrawing, at three
different heights (respectively 90, 228 and 430 mm from the bottom) small samples
of fluid and measuring the refractive index. The linearity of the density profile is also
checked with shadowgraphs, in which the surface of the inner cylinder appears as a
straight line inclined at some angle to the vertical, the inclination being proportional
to the buoyancy frequency (N). The deviations from linearity are less than 7% over the
whole height. Generally, four values of the stratification were used: N = 0.68, 0.82, 0.88
and 0.925 rad s−1.

2.2. Visualizations

A laser-induced fluorescence technique is used for the visualization of the flow
structures. A fluorescent dye solution is injected into the gap through one of the
density measurement tubes, the injection being gravity controlled. A laser sheet
cutting through the axis of the cylinders excites the fluorescein, and the resulting
images are recorded by a high resolution (752 by 582 pixels) CCD Cohu camera
linked to a Sony S-VHS video-recorder. Two different injection procedures were used.
One, to observe non-overturning structures, is called the ‘line’ method, which consists
in injecting into established flow a fluorescein solution of a density different from
that of the fluid at the height of injection. This creates a line of fluorescein which
spirals, because of the azimuthal shear, in the gap. In purely azimuthal flow (circular
Couette flow), the intersection of this spiral with the laser sheet shows vertical lines the
number of which grows in time. The second procedure (the ‘patch’ method) consists
in injecting into established flow a fluorescein dye solution of the same density as the
fluid at the injection height. The fluorescein is then advected by the structures.

2.3. Temporal density fluctuation measurements

The simplest quantity to measure in our system is the density; velocity measurements
are of interest, but are cumbersome (Wereley & Lueptow 1998). For the stratifications
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used, the density variations are about 10% over the total height of the cylinders.
Over the size of the structures (' 10 mm), these variations should be less than 0.1%.
For such small variations, the conductivity and density fluctuations are proportional.
Single-point conductivity probes were designed with a signal to noise ratio of over 7
decades and a small temporal drift, which was subtracted from the data. Two such
probes were placed flush with the outer cylinder wall (to avoid flow perturbations),
at mid-height of the cylinders, and spaced by an azimuthal angle of roughly π/2.
The electric circuit is closed by the earth positioned at the top of the cylinders. The
spatial resolution of the probe is of the order of the diameter of the platinum wire
(0.125 mm). The temporal resolution (' 10 ms) is much smaller than any time scale
of our system (' 10 s).

These probes are linked to a signal acquisition system with sampling rates varying
from 1 to 2 Hz and an acquisition time of 30 to 120 mn. The upper time limit is
imposed by the mixing time and the need to perform several experiments for one
filling of the system. The signal analysis is performed with Matlab software. For more
details concerning the experimental techniques and procedures, see Caton (1998).

2.4. Evolution of the density profile

The density profile is one of the control parameters. It is, therefore, important to
know how long it would take to evolve from a linear to a step-like profile, that is to
mix the density within a vortex. In our system, it is not possible to drop a density
probe vertically in the gap, but the temporal density fluctuation measurements at
one point can be related to the spatial variation. Indeed, the maximum amplitude of
the density fluctuations is proportional to the density variations over the height of a
vortex and thus decreases when mixing occurs. The amplitude would be close to zero
when the density is homogeneously mixed in the structure, that is when the profile is
step-like.

During a 5 hour test in the stratified vortex regime (S), the recorded amplitude
of the density fluctuations decreased by less than 30%. This shows that mixing is
difficult in salt-stratified fluids, as observed in previous studies. For example, in the
turbulent wake of a cylindrical rod moved back and forth in a stably stratified fluid,
less than 5% of the kinetic energy of the rod is used for mixing (Park, Whitehead
& Gnanadeskian 1994). For Richardson (Ri) and Reynolds (Re) numbers similar to
ours (Ri ' 5, Re ' 200), the typical mixing time is about 6 hours. Our experiments
were always carried out for times less than 5 hours, then a new filling was prepared.
These arguments and observations indicate that, in the stratified vortex regime, the
density profile is not step-like, but only slightly perturbed from linearity and the value
of the buoyancy frequency practically does not change during an experiment.

3. Linear stability analysis
We present in this section two different axisymmetric, oscillatory linear stability

analyses. The first one is intended to give insight into the physical instability mech-
anisms by means of analytical solutions of the approximated problem. The second
one neglects only the diffusion, in order to predict accurately the critical values of the
control parameters (Ω, N) and order parameters (frequency and wavelength).

3.1. Governing equations and basic state

We consider the governing equations for an incompressible stratified viscous fluid,
using the Boussinesq approximation. The fluid motion, mass conservation and density
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diffusion equations are

∂ur

∂t
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− 2

r2

∂uϕ

∂ϕ
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)
,
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p
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)
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ρ0

+ ν∆w,
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∂ρ

∂t
+ (u · ∇)ρ = κ∆ρ,



(3.1)

where (ur, uϕ, w) are the velocity components in the cylindrical coordinates (r, ϕ, z)
respectively, ρ is the fluid density and ρ0 the reference density. The variation of
viscosity with density is taken into account through the reference density (Handbook
of Chemistry and Physics 1996). In accordance with the Boussinesq approximation,
the variation of viscosity with height is neglected.

The velocity boundary conditions are

u0
ϕ|r=a = Ωa, u0

ϕ|r=b = 0, (3.2)

where Ω is the rotation rate of the inner cylinder. The boundary conditions for density
are

∂ρ

∂r

∣∣∣∣
r=a,b

= 0. (3.3)

The basic velocity state verifying all the system symmetries is

u0
ϕ = Ar +

B

r
, u0

r = 0, w0 = 0,
∂

∂r

(
p0

ρ0

)
=

(u0
ϕ)2

r
(3.4)

and after applying the boundary conditions, we get

A = −Ω a2

b2 − a2
= −Ω η2

1− η2
, B = −Ab2 = Ω

a2

1− η2
, η =

a

b
. (3.5)

In the experiments, the basic density state is, a priori, a time-dependent state because
the initial density gradient is not maintained by the boundary conditions. However,
if we consider times smaller than the typical diffusion time over the height of the
cylinders H2/κ (more than one year), this gradient can be considered as constant in
time. The Schmidt number Sc =(diffusive time)/(viscous time) = 730 is large in our
system. We, therefore, choose as time scale the viscous time, which allows us to write
the basic state for the density as time-independent:

ρ0(r) = ρ0(z) = ρ0

(
1− N2

g
z

)
, N2 = − g

ρ0

∂ρ0(z)

∂z
, ρ0 = ρ0(0). (3.6)

This basic state is now perturbed by axisymmetric spatio-temporal periodic distur-
bances:

ur = 0 + u′r, uϕ = u0
ϕ + u′ϕ, w = 0 + w′, p = p0 + p′, ρ = ρ0(z) + ρ′, (3.7)

with

(u′r, u
′
ϕ, w

′, ρ′, p′)(r, z, t) = (ũr, ũϕ, w̃, ρ̃, p̃)(r) ei(ωt+kz). (3.8)
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Substituting these expressions in (3.1), linearizing, using the buoyancy frequency,
eliminating p̃, w̃, and ρ̃, and using the following relations between differential oper-
ators:

D̂
∂

∂r
=

∂

∂r
D̂,

∂

∂r

(
1

r

∂

∂r
r

)
= (D̂ + k2),

we get

((κD̂− iω)(νD̂− iω)D̂ +N2(D̂ + k2))(ũr) = 2k2(κD̂− iω)

(
A+

B

r2

)
ũϕ,

(νD̂− iω)ũϕ = 2Aũr,

D̂ =
∂2

∂r2
+

∂

r∂r
− 1

r2
− k2.

 (3.9)

For κ = 0 equation (4.11) of Boubnov et al. (1995) is recovered and for N = 0
the standard homogeneous Taylor–Couette instability system is recovered (cf. Chan-
drasekhar 1961).

3.2. Eigenmode analysis

We first non-dimensionalize equations (3.9), in the following way:

η =
a

b
, α = kd, σ =

ωd2

ν
, Sc =

ν

κ
,

ξ =
r − a
d

, G =
N2d4

ν2
, T =

4η2Ω2d4

(1− η2)ν2
, (3.10)

where d = (b − a) is the gap width, Sc is the Schmidt or Prandtl number, G the
Grashof number and T the Taylor number.

The small-gap approximation consists of an order-0 expansion of (3.9) in (1 − η),
which leads to

((D− α2 − iScσ)(D− α2 − iσ)(D− α2) + ScGD)ũr = (D− α2 − iScσ)(1− ξ)ũϕ,

(D− α2 − iσ)ũϕ = −Tα2ũr,

}
(3.11)

with D = ∂2/∂ξ2 and the boundary conditions

ũϕ
∣∣
ξ=0,1

= ũr
∣∣
ξ=0,1

= 0,

free :
∂2ũr

∂ξ2

∣∣∣∣
ξ=0,1

= Dũr
∣∣
ξ=0,1

= 0,

∂ρ̃′

∂ξ

∣∣∣∣
ξ=0,1

= 0.


(3.12)

The radial and orthoradial velocities are replaced by their Fourier series(
ũr =

∞∑
m=1

Am sin(mπξ) and ũϕ =

∞∑
n=1

An sin(nπξ)

)
in equation (3.11). Projection of (3.11) on the first mode, i.e. multiplying by sin(πξ)
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Figure 3. Marginal stability curve for N = 1 rad s−1.

and integrating over ξ gives the complex dispersion relation

T ′ =
2

x(1 + x+ iScσ′)
((1 + x+ iScσ

′)(1 + x+ iσ′)(1 + x) + ScG
′)(1 + x+ iσ′), (3.13)

where the following changes of variables have been used:

x =
α2

π2
, σ′ =

σ

π2
, T ′ =

T

π4
, G′ =

G

π4
. (3.14)

This dispersion relation is identical within a factor of 1
2

to the one obtained by
Thorpe (1966) for stratified Taylor–Couette flow in the corotating case.

At the onset of instability (marginal stability), the frequency σ is real.

3.2.1. Oscillatory instability (σ 6= 0, real)

The Taylor number must be real. So, the imaginary part of (3.13) must be zero,
leading to the expression for the frequency of oscillation:

σ′2 = −
(

(1 + x)2

S2
c

)
+

(Sc − 1)ScG
′

2(1 + x)S2
c

> 0. (3.15)

Using (3.15), (3.13) becomes

T ′o =
2(Sc + 1)2

xS2
c

[
(1 + x)3 +

ScG
′

2(Sc + 1)

]
, (3.16)

where the superscript o stands for oscillatory.
This function is plotted in figure 3 for our experimental geometry, Schmidt number

Sc = 730 and fixed N = 1 rad s−1.
The minimum of T ′o at xoc defines the critical Taylor number and the critical

wavenumber:
∂T ′o

∂x

∣∣∣∣
xoc

= 0⇒ 2(xoc)
3 + 3(xoc)

2 = 1 +
ScG

′

2(Sc + 1)
. (3.17)

Substituting in (3.16), we get

T ′oc =
6(1 + Sc)

2(1 + xoc)
2

S2
c

. (3.18)

It is seen that the critical wavenumber and the critical Taylor number depend on
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the Schmidt number only through ratios like (Sc + 1)/Sc. When Sc is large, it no
longer influences the critical wavenumber, the frequency of oscillation or the Taylor
number.

3.2.2. Stationary instability (σ = 0)

Equation (3.13) for σ = 0 gives

T ′s =
2

x
((1 + x)3 + ScG

′), (3.19)

where the superscript s stands for stationary. The corresponding expressions for the
critical wavenumber and critical Taylor number in the stationary case are

2(xsc)
3 + 3(xsc)

2 = 1 + ScG
′ ⇒ T ′sc = 6(1 + xsc)

2. (3.20)

Now, the critical wavenumber strongly depends on the Schmidt number and hence
the critical Taylor number too. As already shown by Thorpe (1966) for the co-rotating
stratified Taylor–Couette flow, a critical Schmidt number should exist for which the
oscillatory instability switches to a stationary one.

3.2.3. Selection of the instability character

The selection criterion between stationary and oscillatory is the respective lower
value of the critical Taylor number. Indeed, if T ′sc < T ′oc , the instability will be
stationary and it will be oscillatory if T ′oc < T ′sc , which depends on the Schmidt
number.

For large G′ and x, we have

xoc ∼
(

ScG
′

4(Sc + 1)

)1/3

, xsc ∼
(
ScG

′

2

)1/3

(3.21)

so that T ′oc < T ′sc when

(Sc + 1)2/3

Sc
< 21/3. (3.22)

For G′ � 1, the condition for an oscillatory instability is thus Sc > 1.44, which is
identical to the value obtained by Thorpe (1966) and close to the numerical threshold
value Sc = 1.93 of Hua et al. (1997a). A simple physical explanation for a threshold
value for the Schmidt number of order 1 can be given. Consider a system with two
control parameters, one stabilizing, the other destabilizing. It is widely believed that
stationary rolls should be considered as the universal secondary motion resulting from
the primary instability (Busse & Clever 1996). This supposes that any effect other than
the destabilization can be treated as a perturbation. This will be the case only if the
stabilizing parameter disappears faster than the instability appears. In our case, we
would have rolls if the typical dissipation time of the stratification d2/κ were smaller
than the instability dissipation time d2/ν. This yields the criterion ν/κ = Sc < 1 for
stationary instability.

Another possibility exists to obtain a stationary onset of instability even for large
Schmidt numbers. Equation (3.15) shows that σ2 might be negative, in which case the
oscillatory instability would not exist. Solving σ2 = 0 with the constraint of equation
(3.17) and Sc = 730 gives a critical Grashof number G = 0.9. This corresponds to a
stratification of N = 10−3 rad s−1 which is far below the experimental values used.

In conclusion, the onset of instability should be oscillatory in the experiments,
where the Schmidt number is equal to 730, and the buoyancy frequency N larger
than 0.1 rad s−1.
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3.2.4. Instability mechanisms and scaling laws

For large Schmidt number, (3.15) to (3.18) reduce to

2(xoc)
3 + 3(xoc)

2 = 1 +
G′

2
, (3.23a)

T ′oc = 6(1 + xoc)
2, (3.23b)

σ′2 =
G′

2(1 + x)
. (3.23c)

Writing (3.23c) in dimensional variables we get

ω2 =
N2

2(1 + k2d2/π2)
(3.24)

This is, except for the 1/2 factor, the dispersion relation for internal gravity waves
confined between two vertical planes (Nicolaou, Liu & Stevenson 1993).

Suppose now that G′ � 1. Equation (3.23a), in dimensional form, gives

xoc ∼
(
G′

4

)1/3

⇒ λoc
2d

=

(
2νπ2

Nd2

)1/3

. (3.25)

The viscosity plays its usual role, acting like a low-pass filter for the wavenumber.
The effect of stratification is the reverse, acting like a high-pass filter. The balance
between both effects fixes the wavenumber, which imposes the frequency of the waves
through the dispersion relation of confined internal gravity waves.

We want to know whether these mechanisms remain valid somewhat above the
onset of instability. For this we derive relations between the parameters at the onset
of instability. From (3.23a, b), the size of the structures at threshold (λoc/2) can be
related to the critical Froude number Froc = Ωo

c /N:

λoc
2d
∼ CFroc , C =

√
8η2

3(1− η2)
= 1.96. (3.26)

The frequency of the waves is obtained by substituting (3.23a) and equation (3.26) in
(3.23c):

σ =

√
2

C2(Froc )
2

=

√
2

C2
Ri, (3.27)

where Ri is the Richardson number.
Since these relations are scaling laws, we suppose that they are valid in the whole

oscillatory regime. We then obtain the change in flow behaviour in the first unstable
regime, for fixed stratification:

δλ = δΩ, δω = −2δΩ, (3.28)

where

δω =
ω

ωo
c

− 1, δλ =
λ

λoc
− 1, δΩ =

Ω

Ωo
c

− 1. (3.29)

This indicates that, in the first unstable regime, the size of the structure should
grow linearly with the control parameter, while the frequency of the waves should
decrease linearly.
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3.3. Wide-gap analysis

Here we present the second linear stability analysis which aims at predicting the values
of the critical control and order parameters, for the experimental conditions. The
perturbations are still axisymmetric and oscillatory. The calculations are performed
without the small-gap approximation, with rigid velocity boundary conditions but
for an infinite Schmidt number. This means that we only neglect the molecular
diffusion, which is reasonable since in the experiments Sc = 730. We will follow
closely Chandrasekhar’s method, the stationary case being here generalized to the
oscillatory one.

First, equations (3.9) are non-dimensionalized without the small-gap approximation,
taking into account the curvature of the system. The relations between the new non-
dimensional parameters (with primes) and the previous one are

T ′ = T
η2

(1− η)4(1− η2)
, G′ =

G

(1− η)4
, α′ =

α

1− η , σ′ =
σ

(1− η)2
, r′ =

r

b
.

(3.30)

Nearly the same equations as (3.11) are obtained, the difference lying in the
differential operators. For the following, primes are dropped:(

(DD∗ − α2 − iσ)(DD∗ − α2) + i
G

σ
DD∗

)
ũr = −Tα2

(
1

r2
− 1

)
ũϕ,

(DD∗ − α2 − iσ)ũϕ = ũr,

 (3.31)

D =
d

dr
, D∗ =

d

dr
+

1

r
, (3.32)

with the rigid velocity boundary conditions at r = 1 and r = η:

ũr = ũφ = w̃ = 0. (3.33)

After calculations (cf. Chandrasekhar 1961), the following matricial secular equation
is obtained:

det

∣∣∣∣∣(α4
j + α4 + iα2σ)Njδjk + α2

j

(
2α2 + iσ

(
1− G

σ2

))
∆1
jk

−Tα2

(
pj∆I(α̃r) + qj∆K(α̃r) +

α̃2(Njδjk −Mjk)− α2
jD∆jk

α4
j − α̃4

) ∣∣∣∣∣ = 0. (3.34)

The αj are the solutions of the transcendental equation:

(DD∗)2y =

(
d2

dr2
+

1

r

d

dr
− 1

r2

)2

y = α4
j y, (3.35)

the functions y obeying: y
∣∣
r=1,η

= (dy/dr)
∣∣
r=1,η

= 0

The eigenvectors y of this system can be written as a sum of Bessel functions:

C1(αjr) = AjJ1(αjr) + BjY1(αjr) + CjI1(αjr) + DjK1(αjr). (3.36)
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The Aj , Bj , Cj and Dj are determined up to an arbitrary multiplicative constant.

Nj =

∫ 1

η

(uj(r) + vj(r))
2 r dr,

∆(±1)
jk =

∫ 1

η

(uj(r)− vj(r))(uk(r) + vk(r))r
(±1) dr,

D∆jk = ∆(1)
jk − ∆(−1)

jk ,

∆Ik(α) =

∫ 1

η

Ik(α)(uk(r) + vk(r))

(
r − 1

r

)
dr,

∆Kk(α) =

∫ 1

η

Kk(α)(uk(r) + vk(r))

(
r − 1

r

)
dr,

Mjk =

∫ 1

η

(uj(r) + vj(r))(uk(r) + vk(r))
1

r
dr,

uj(r) = AjJ1(αjr) + BjY1(αjr),

vj(r) = CjI1(αjr) + DjK1(αjr),

α̃ = α2 + iσ,

pj = 2α2
j /[∆(α4

j − α̃4)](uj(1)K1(α̃η)− uj(η)K1(α̃)),

qj = 2α2
j /[∆(α4

j − α̃4)](uj(η)I1(α̃)− uj(1)I1(α̃)).



(3.37)

Most integrals have no analytical solutions. The full system has been solved
numerically, with two physical constraints: the Taylor number must be real and its
derivative with respect to α must be zero. The first result of these calculations is
that the frequency of oscillation at the onset is never zero except when there is no
stratification. The onset of instability in the experimental situation must, therefore,
be oscillatory. The theoretical values will be compared with experimental ones in the
next section, which contains the experimental results.

4. Experimental results
4.1. First unstable regime: the wave regime

4.1.1. Visualizations

The numerical simulations of Hua et al. (1997a) indicate that the first bifurcation
from purely azimuthal Couette flow is a direct Hopf bifurcation leading to a flow
regime of ‘oscillatory convective modes’. We present in figure 4 dye visualizations of
this regime, obtained with the ‘line’ method.

The pattern has been captured for constant time-steps in one vertical section of the
gap. The initially vertical lines of dye are deformed by spatially-periodic oscillations,
their wavelength being nearly equal to the gap width (λ ' d). In contrast to the
homogeneous case, for which the first unstable regime is stationary (Taylor vortices),
the first unstable regime for the stratified case is time dependent. As underlined by
previous studies (Boubnov et al. 1995; Hua et al. 1997a), the reduction in vertical
wavelength compared with the homogeneous case (λ ' 2d) is directly related to the
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Figure 4. Temporal sequence of dye visualizations for N = 0.88 rad s−1, Ω = 1.1 Ωc:
standing wave regime.
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Figure 5. Spectral energy of the density fluctuations versus frequency in the wave regime.
N = 0.82 rad s−1, Ω = 1.03 Ωc. The oscillation frequency is the wave frequency.

inhibition of vertical motion by stratification. Time-records of this pattern clearly
show oscillations, the positions of the maxima and minima of oscillation being at rest.
No overturning is observed in this regime, indicating standing waves.

4.1.2. Density fluctuation measurements

The characteristics of the onset of instability have been investigated by measure-
ments of the temporal evolution of the density fluctuations using the conductivity
probes described in § 2. For a fixed stratification, when the rotation rate of the inner
cylinder is increased up to the critical value Ωc, the frequency of the waves appears in
the power spectra, indicating a Hopf bifurcation. A spectrum obtained in this regime
is shown in figure 5.



106 F. Caton, B. Janiaud and E. J. Hopfinger

0.6

0.4

0.2

0 0.4 0.8 1.2
0

0.02

0.04

0.06

N (rad s–1)

¿
c 

(r
ad

 s
–1

)

f c
 (

s–1
)

Figure 6. Evolution of the critical rotation rate (Ωc, left axis) and frequency (fc, right axis) versus
stratification: ◦, experimental Ωc and solid line theoretical Ωc; •, experimental fc and dashed line
theoretical fc.
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Figure 7. Evolution of the non-dimensional frequency deviation from the critical value versus ε.�, N = 0.68 rad s−1; ◦, N = 0.82 rad s−1 and 4, N = 0.925 rad s−1. Confined internal waves model
from equation (3.28): slope (−2) straight line.

The frequency f2, corresponding to the rotation rate of the inner cylinder, is present
in the spectrum, due to the small circularity defects of the cylinder. Note that the
energy contained in this excitation frequency is at least 100 times weaker than the
energy contained in the wave frequency.

We first checked that the frequency obtained in the spectra only depends on the
rotation rate and the stratification and not on the experimental procedure. There is
no hysteresis for the transition between purely azimuthal flow and the wave regime,
i.e. the primary bifurcation is a supercritical Hopf bifurcation, which agrees with the
numerical simulations of Hua et al. (1997a). The experimental critical rotation rate
(Ωc) and critical frequency (fc) for different stratifications are compared in figure 6
with the wide-gap linear stability analysis.

It is seen that agreement between experiments and theory is excellent. The stabilizing
effect of stratification is demonstrated by the increase of Ωc with stratification.

We studied the evolution of the non-dimensional frequency deviation from the
critical value (f/fc − 1) in the standing-wave regime as a function of the control
parameter (ε = Ω/Ωc − 1) for different stratifications (figure 7).
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t = 0 s 2 s 4 s 6 s

Inner cylinder Outer cylinder

Figure 8. Temporal sequence of dye visualizations in the stratified vortex regime, N = 0.88 rad s−1,
Ω = 1.35Ωc. The black arrows indicate the direction of rotation in each vortex and the white arrows,
the direction of motion of the boundary between two counter-rotating vortices.

All values collapse remarkably well on a −2 slope straight line which corresponds to
the prediction of equations (3.29) and (3.28). Cross-correlated spectra from two probes
also show that these waves are axisymmetric, the phase shift for the wave frequency
being equal to zero. These observations demonstrate that the system bifurcates from
the purely azimuthal flow through a supercritical Hopf bifurcation to a state of
standing, axisymmetric, confined internal gravity waves.

4.2. The stratified vortex regime

4.2.1. Visualizations

By further increasing Ω above Ωc, the second unstable regime appears as a vor-
tex regime (figure 8). The spatio-temporal structure of this regime has also been
determined with the fluorescein dye technique, using the ‘patch’ method.

Overturning is depicted by the presence of small spirals in the structures. As in the
wave regime, the vertical size of the structures is compressed by the stratification. Two
counter-rotating vortices are present at a given height, and the boundary between two
vortices (indicated by the white arrow) appears in the visualization plane at roughly
half the rotation rate of the inner cylinder. An image of the structures in the two
diametrically opposite plane sections of the gap is shown in figure 9. In this figure, at
a given height, the direction of motion of the boundary between two counter-rotating
vortices (indicated by the white arrow) is not symmetric with respect to the rotation
axis, which indicates that the flow is no longer axisymmetric.

In figure 10 we present a schematic top view of a model of the flow for an azimuthal
mode m = 1 and its correspondence with the visualizations. The visualizations and
this model are in good agreement with the numerical simulations of Hua et al. (1997a)
and the visualizations of Boubnov et al. (1995) and Withjack & Chen (1974).

4.2.2. Density fluctuation measurements

A temporal signal of the density fluctuations in this stratified vortex regime is
presented in figure 11. The signal is clearly periodic, the amplitude of the oscillation
being constant over the whole record. This shows that mixing is negligible and the
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Figure 9. Visualization in the stratified vortices in diametrically opposite sections of the gap.
The white arrows indicate the direction of motion of the boundary between two counter-rotating
vortices. N = 0.88 rad s−1, Ω = 1.35Ωc.
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Figure 10. Schematic (a) top view and (b) section of two counter-rotating vortices in the stratified
vortex regime (mode m = 1).
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Figure 11. Temporal evolution of the density fluctuations in the stratified vortex regime.
N = 0.925 rad s−1, Ω = 1.17Ωc.
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Figure 12. Spectral energy of the density fluctuations versus frequency in the stratified vortex
regime. The azimuthal rotation frequency corresponds to the frequency of appearance of the
boundary between counter-rotating vortices. N = 0.925 rad s−1, Ω = 1.17Ωc.

basic density profile is only weakly perturbed by the flow, in agreement with the
numerical simulations of Hua et al. (1997a) (their figure 5a).

A typical power spectrum of this regime is displayed in figure 12. The inner-
cylinder frequency is still present. The main frequency corresponds to the frequency
of appearance, in the laboratory frame, of the boundary between the counter-rotating
vortices at the same height, that is to the azimuthal rotation frequency of the whole
vortex pattern.

The phase shift between the conductivity probes for the fundamental frequency
is equal to the angle difference (π/2) between the probe locations, confirming the
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Figure 13. Evolution of the azimuthal rotation frequency with the inner cylinder frequency. 4,
N = 0.68 rad s−1, ◦ and •, N = 0.82 rad s−1, �, N = 0.925 rad s−1. The straight line is a linear fit:
f = 0.0027 + 0.413Ω/2π, regression coefficient R = 0.985.

non-axisymmetry of the flow in this regime. Figure 13 shows that the evolution of
this frequency with rotation rate no longer depends on stratification.

The straight line fit in figure 13 verifies the relation

f = Cst(m) + m
〈Ω0〉
2π

= 0.0027 +
〈Ω0〉
2π

(4.1)

with

〈Ω0〉 =

∫ b

a

(A+ B/r2)r dr∫ b

a

r dr

=

(
− a2

b2 − a2
+

2a2b2

(b2 − a2)2
ln
b

a

)
Ω = 0.413Ω (4.2)

for our apparatus. Here, m = 1 is the azimuthal mode and 〈Ω0〉 is the angular velocity
calculated for purely azimuthal circular Couette flow, averaged over the volume. In a
first approximation, the whole 3D pattern is drifting at this mean angular velocity 〈Ω0〉.
Because of the system’s azimuthal rotation symmetry (SO2), the non-axisymmetric
vortex pattern cannot drift at exactly the mean angular velocity (Knobloch 1997).
Hence, the small value at the origin (Cst(m)) is the precession frequency, relative to the
mean angular velocity. So, the frequency measures the drift velocity of the pattern,
i.e. the revolution period of a vortex around the axis of the cylinders. Since there is
no other frequency associated with the flow in the spectrum shown in figure 12, the
density field is stationary in the frame rotating at the drift velocity of the pattern.
Consequently, the vortices are steady in this rotating frame.

4.3. The wave–vortex transition

4.3.1. Observation of hysteresis

Special attention has been given to the transition between the wave regime and the
vortex regime. This transition does not correspond to the appearance or disappearance
of any frequency in the spectra, nor to a jump in the measured frequency. The
transition occurs when the frequency of the waves equals the mean angular velocity.
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Figure 14. (a) Hysteresis in the evolution of the measured frequency with the control parameter.◦, increasing; •, decreasing procedure for N = 0.82 rad s−1. (b) Schematic representation of the
bifurcation diagram from purely azimuthal flow to vortices. The ordinate is the energy E of the
perturbations relative to the basic state.

The only hint of a transition in the spectra is that for cross-correlated spectra from
two probes, the phase shift for the measured frequency is zero in the wave regime and
equal to π/2 in the vortex regime. The evolution of the main frequency versus the
rotation rate, when increasing or decreasing the control parameter by small steps, is
plotted in figure 14(a). At Ωt, when increasing the control parameter, the variation of
the frequency with the control parameter changes radically, indicating the transition
from the wave to the vortex regimes.

These measurements show that the frequency can have two different values for one
rotation rate, depending on the procedure (increasing or decreasing). This hysteresis
implies that the bifurcation between the wave regime and the vortex regime is a
subcritical bifurcation, namely that the vortex branch is created through a saddle-node
bifurcation. As explained in § 2.4, the basic density profile is only slightly perturbed
from linearity in the stratified vortex regime, so the hysteresis is not due to mixing.
Let us recall that only one frequency is present in the wave regime (oscillation) and in
the vortex regime (azimuthal rotation) and these frequencies have different physical
origins. Indeed in the reference frame rotating at the drift velocity of the pattern, the
flow is stationary in the stratified vortex regime, whereas in the wave regime the flow
is still oscillatory. So, it is not likely that these solutions connect in the phase space.
This suggest that the saddle-node bifurcation is a global bifurcation.
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4.3.2. Bifurcation diagram

From these observations a plausible schematic projection in the plane (ε, E) (where
E is a typical energy of a mode) of the diagram of bifurcations is proposed in figure
14(b). Our experimental procedure did not allow us to measure the energy of the
mode, so E is only a qualitative estimation. The true dimension of the diagram is
six: each mode energy and frequency, ε and N. Figure 14(a) is its projection in a (ε,
frequency)-plane. For fixed stratification, this bifurcation diagram can be described
as follows. A branch of waves is created through a direct Hopf bifurcation at the
abscissa εc = 0 (by definition). The stable and unstable branches of stratified vortices
appear in a saddle-node bifurcation at εsn. At εt the system jumps onto the stable
branch of the vortices. Decreasing ε from the drifting vortices branch, the system will
follow this branch until ε = εsn. Then it can jump either onto the purely azimuthal
flow if εsn < 0, or onto the wave branch if εsn > 0. In our system, εsn is slightly
negative. Experimentally we do not know what happens to the oscillatory branch
after the transition point εt.

4.3.3. A possible mechanism for the wave–vortex transition

The transition from the wave to the stratified vortex regimes takes place when
the frequency of the waves equals the mean angular velocity of the bulk of the
azimuthal flow. We propose here a simple qualitative argument which might explain
this transition. First recall that in the wave regime, the azimuthal velocity contains a
temporally periodic perturbation. From equations (3.7) and (3.8), ignoring the axial
periodicity, the local angular velocity is

uϕ(r)

r
= Ω0(r) + Aϕ(r) cosωt. (4.3)

So the waves modulate the angular velocity of the bulk of the fluid at their own
frequency. As seen in the non-axisymmetric vortex regime (§ 4.2), the system can be
interpreted as a system rotating at the averaged angular velocity. In the wave regime,
this averaged angular velocity can be written as

〈Ω〉 = 〈Ω0〉(1 + α cosωt), (4.4)

where α is the forcing amplitude, related to the amplitude of the waves Aϕ. When
the wave frequency ω equals the mean rotation frequency 〈Ω0〉, we believe that
a parametric resonance might occur. This resonance would increase the velocity
fluctuations and thus allow the system to explore the phase space. So it can leave the
wave attractor and fall onto the vortices attractor.

4.3.4. Implications of the bifurcation diagram

The bifurcation diagram explains the differences between the present results and
those of Boubnov et al. (1995). The onset of instability reported by Boubnov et al. is
a non-axisymmetric flow regime with vortices, called S in figure 1. The experimental
apparatus of Boubnov et al. had circularity defects of about 1 mm for a gap width of
12 mm.

We performed density fluctuation measurements in the apparatus used by Boubnov
et al. (1995) for which a typical spectrum is plotted in figure 15. The main point is
that the excitation frequency energy is now 100 times larger than the energy related
to the vortices azimuthal rotation frequency (compare with figure 12). This large
noise amplitude forces the system to jump directly onto the drifting vortices branch,
whenever possible. Since in these experiments non-axisymmetric vortices were always
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Figure 15. Spectral energy of density fluctuations in the vortex regime, obtained on
Boubnov et al.’s experimental system.

obtained at the onset of instability, the abscissa of the saddle-node bifurcation εsn
was measured instead of the real onset of instability. Comparison of these values with
the theoretical and numerical critical values shows that εsn is close to zero for all the
stratifications. Why this is the case remains unexplained.

Up to this point, we have not mentioned the influence of varying the stratification
on the bifurcation diagram. It should modify the abscissa of the transition and saddle-
node bifurcation points. At the transition point, according to the experimental curve
(see figure 14a), the wave frequency and the angular drift velocity of the vortices
are equal. Hence, knowing the theoretical evolution of the wave frequency ω from
equation (3.28):

ω(N) = [1− 2ε]ωc(N), (4.5)

and the angular drift velocity of the vortex pattern ωazi from equation (4.1):

ωazi = 0.413[ε+ 1]Ωc(N) + 2π× 0.0027, (4.6)

as a function of ε and N, the transition point can be predicted as a function of the
stratification. In view of the equality of these pulsations at the transition point, one
gets

εt(N) =
ωc(N)− [2π× 0.0027 + 0.413Ωc(N)]

0.413Ωc(N) + 2ωc(N)
. (4.7)

In figure 16 are plotted the theoretical (equation (4.7)), experimental and numerical
(simulations of Hua et al. 1997a) values of εt as a function of stratification. The
agreement between experimental, numerical and theoretical values of the transition
point is excellent.

4.4. The T regime

4.4.1. Visualizations

The next regimes observed by Boubnov et al. (1995) are the T and ST regimes
(figure 1). According to their observations, the T regime corresponds to the presence
of structures looking like Taylor vortices, the ST regime being a transition regime.
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Figure 16. Transition value εt versus stratification. �, Theory; �, experiments; •, simulation.
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Stationary
cells

Figure 17. Patch visualizations of the T regime N = 0.88 rad s−1, Ω = 2.5Ωc.

Our observations indicates that there is no qualitative difference between these two
regimes. The whole regime will now be called T.

In figure 17 ‘patch’ visualizations exhibit the main feature of this regime. In the
first snapshot (t = 9 min) two stationary vortices of aspect ratio slightly larger than
one, looking like Taylor vortices, are observed. These are replaced at t = 16.45 min
by more complex structures. At t = 23 min turbulent-like structures, called defects,
are clearly present. This twofold behaviour (stationary structures and defects) of the
flow exists in the whole parameter range of the T regime.

4.4.2. Density measurements

Temporal density fluctuations measurements were also performed in the established
flow regime. Such a record is shown in figure 18. The signal is strongly non-stationary
with a large variation of the mean value. The amplitude of the fluctuations also varies
widely, without any clear trend.

A typical spectrum of the density fluctuations is presented in figure 19 (light line).
In order to emphasize the spectral peaks, a mean spectral energy density (thick line)
is also calculated, by dividing the whole signal into 8 windows of 512 points. The
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Figure 18. Temporal evolution of the density fluctuations. N = 0.82 rad s−1, Ω = 2Ωc.
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Figure 19. Spectral energy density (light line) and its mean value (thick line) slightly shifted.
N = 0.82 rad s−1, Ω = 2Ωc.

first observation in figure 19 is that the noise level is far larger than in the preceding
regimes, the frequency peaks being much broader.

A time–frequency analysis of the temporal signal is shown in figure 20. For a
periodic signal, we should obtain horizontal straight lines (the fundamental and its
harmonics). The phenomena here are clearly more chaotic. Two bubbles of periodicity
are observed around 100 < t < 500 s and 2500 < t < 2800 s. At t ∼ 1000 s and
2000 < t < 2500 s, no signal is recorded, whereas at t ∼ 1500 s and t ∼ 3500 s, broad
band components are present.

The first broad-band component zone (t ∼ 1500 s) corresponds to the fast decrease
of the mean density at the probe location, the amplitude of the fluctuations being
constant. The second broad-band zone seems, however, to characterize a weakly
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Figure 20. Iso-density contours of frequency versus time in the T regime for
N = 0.82 rad s−1, Ω = 2Ωc.

turbulent behaviour at the location of the probe, a behaviour that has also been
observed in the visualizations.

Since we are not able to visualize the flow and measure the density fluctuations
at the same time (the injection of fluorescein changes the conductivity locally), we
cannot directly link the density measurements to the visualizations.

In conclusion, the visualizations indicate a form of weak turbulence which appears
at ε ' 0.5. Recall that, in the homogeneous case, for a large aspect ratio system,
weak turbulence appears for ε ' 12 (Fenstermacher, Swinney & Gollub 1979). For
a small aspect ratio system (Γ ' 5), a chaotic regime was also observed close to the
threshold by Mullin, Cliffe & Pfister (1987). Theoretical work on magnetoconvection
in an infinite system (Rucklidge 1994) suggests that the early appearance of weak
turbulence might be the consequence of the existence of a global bifurcation.

4.5. Regime CT

4.5.1. Visualizations

The last regime we have studied is labelled CT for ‘Compact Taylor vortices’. The
visualizations presented in figure 21 show that the wavelength of the structures is equal
to twice the gap width, with no size distribution, as in the homogeneous case. There
is also a well-defined temporal sequence where a given cell grows, then exchanges
fluid with a neighbouring cell, and then shrinks. Moreover, records of both plane
sections of the gap show that the flow is non-axisymmetric. These observations are
identical to those of Hua et al. (1997a) and show striking similarities between the CT
regime and the wavy vortices regime in homogeneous Taylor–Couette flow (Wereley
& Lueptow 1998). This means that the CT regime is probably a regime of wavy
vortices. This would imply non-turbulent spectra for velocity fluctuations. However,
because fluid is periodically exchanged between adjacent overturning vortices, there
should be chaotic mixing (Solomon, Thomas & Warner 1998). In other words, the
flow allows fluid particles of different densities to come near to each other. Hence,
density fluctuation spectra should be very noisy.
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Figure 21. Temporal sequence of dye visualizations in the CT regime. N = 0.88 rad s−1, Ω = 4Ωc.
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Figure 22. Temporal evolution of the density fluctuations in the CT regime. N = 0.82 rad s−1,
Ω = 5.1Ωc.

4.5.2. Density measurements

The temporal evolution of the density fluctuations in established flow conditions
is presented in figure 22. As expected from the forgoing discussions, the signal looks
noisy and its amplitude decreases slowly in time, indicating mixing. Note that as
much as 25 min (1500 s) is needed to decrease the amplitude of figure 22 by a factor
two. This agrees with the snapshot of figure 5(c) of Hua et al. (1997a) which indicates
a step-like density profile, with strong density gradients appearing each wavelength.
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Figure 23. Spectral density energy. N = 0.82 rad s−1, Ω = 5.1Ωc.
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Figure 24. Iso-density contours of frequency versus time in CT regime
N = 0.82 rad s−1, Ω = 5.1Ωc.

Within two vortices (one wavelength) density variations are weak, except in the local
fluid exchange region.

Figure 23 shows that the spectrum is much more peaked than in the preceding T
regime. However, the noise level is still very large compared to the wave or stratified
vortex regimes. Cross-correlated spectra confirm that the flow is non-axisymmetric. To
give more information about this flow regime, a time-frequency analysis is presented
in figure 24. It is seen that the large-band noise present at the beginning of the record
decreases in time, a behaviour expected from the temporal record. For t > 1000 s, the
flow is nearly periodic as can be seen from the horizontal lines.
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Figure 25. Mean value (λ̄/2d) and standard deviation of the axial structure size versus the distance to
threshold (ε) for N = 0.82 rad s−1. The mean sizes and standard deviations are non-dimensionalized
by the gap width.

We conclude that this regime is a wavy vortices regime. The noise is related with
the chaotic mixing, causing the density to be more uniform within a wavelength as
time passes. This reappearance of periodic structures, interpreted as wavy vortices as
observed in homogeneous Taylor–Couette flow, after a weakly turbulent regime, will
be explained by a simple energy argument in § 5.1.

4.6. Structure size

Up to this point, the temporal behaviour of the flow has mainly been considered.
From the vizualisations it is also possible to determine the axial size distribution of
the vortex structures. We calculated the mean non-dimensional structure size (λ̄/2d)
and its standard deviation, over typically 10 cells, for a given stratification. Figure 25
displays a smooth evolution of the mean structure size with the control parameter.
There is regular growth until ε ' 0.8 where the non-dimensioned size saturates at
about 1. This is possible in this closed system, because end boundary conditions are
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of no importance in stratified flows. The standard deviation has a clear jump at the
transition between the stratified vortex and Taylor vortex regimes at ε ' 0.5. These
results are in good agreement with the numerical simulations of Hua et al. (1997a).
The experimental method of Boubnov et al. (1995) did not allow this evolution to be
determined. Nevertheless, a close look at their figure 6(b) shows that, at mid-height
of the photograph, structures of aspect ratio 1

2
are present, whereas much larger

structures exist at the bottom. Our main result is that the mean size of the structures
increases continuously with rotation rate, until it reaches the size of the gap. The
second important result is that there is a sudden appearance of size distribution for a
rotation rate corresponding to the transition between the stratified vortex and Taylor
vortex regimes; this distribution is probably linked to the existence of defects in this
T regime.

5. Further discussion and conclusions
5.1. Energy argument

Energy considerations allow simple explanations for the observed vortex sizes to be
obtained as a function of Ω. We consider here that the inertial and stratification effects
are dominant, so that viscosity effects can be neglected. Consider a fluid particle near
the inner cylinder, of kinetic energy Ec = 1

2
ρ(aΩ)2. This energy can be converted

into potential energy Ep = ρh2N2, where h is the height with respect to the original
position of the particle and ρ the particle density. The maximum height allowed by
the stratification for a cell structure is thus

ρh2N2 6 1
2
ρ(aΩ)2 → hmax

d
6

a√
2d

Ω

N
. (5.1)

This expression is very similar to the one obtained in the linear stability analysis
(3.26), and also to the expression obtained by Boubnov et al. (1995). Note that (3.26) is
obtained for confined internal waves whereas the expression in Boubnov et al., which
is identical except from the numerical factor, is valid for stationary axisymmetric
vortices. So the numerical proportionality factor contains the details of the flow.

So, for the wave and stratified vortex regimes the maximum height of the structures
is fixed by the stratification, because hmax/d < 1 in these regimes. When Ω is increased,
the maximum height allowed by the stratification approaches the gap width. As a
consequence, the structure size begins to be dependent not only on the stratification
but also on the radial boundary conditions. Thus, the T regime exhibits a competition
between a stratification-dominated flow and an inertia-dominated flow. In this regime
stationary vortices of aspect ratio 1 (Taylor vortices) can be present. To get compact
Taylor vortices (fluid is exchanged between vortices within a wavelength) the particle
must be allowed to make excursions up to h = 2d. In this case, the homogeneous
flow should nearly be recovered. This qualitative reasoning explains the similarities
between the CT regime and wavy vortices in homogeneous fluid and can predict the
slope of the threshold between the T and CT regimes. From (5.1) we get

ΩT→CT
N

= 2

√
2d

a
= 0.84. (5.2)

This is in reasonably good agreement (see figure 26) with the experimental data of
Boubnov et al. (1995).
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Figure 26. Experimental flow regimes diagram from Boubnov et al. (1995). The solid straight line
(slope 0.84) comes from the energy argument (5.2).

5.2. Similarities with other flows depending on two control parameters

In an extended system, a bifurcation diagram similar to the one we observed has only
been proposed theoretically for convection subjected to a magnetic field (Rucklidge
1994). Its possible existence has, however, never been demonstrated experimentally or
numerically. On the other hand, primary Hopf bifurcations and global bifurcations
have been extensively studied in confined systems (Peacock, Binks & Mullin 1999;
Delouche 1996; Millour et al. 1999), and specifically in small aspect ratio homo-
geneous Taylor–Couette flow (Mullin et al. 1987; Mullin 1993) in which cases the
boundary effects are crucial. The diagram shown in figure 14b is thought to be generic
for extended systems with two independent control parameters with opposite effects,
one destabilizing and the other one stabilizing. When the typical disappearance time
associated with the stabilizing control parameter is larger than the typical dissipa-
tion time of instability, the primary bifurcation must be oscillatory. This criterion
gives a critical non-dimensional number (ratio of typical times) equal to one. Several
hydrodynamic systems have such control parameters with opposite effects: thermal
convection in rotating systems (Chandrasekhar 1961; Thorpe 1966; Knobloch 1997;
Zhong, Ecke & Steinberg 1993), convection with magnetic field (Chandrasekhar 1961)
and convection in binary fluids with negative separation ratio (Kolodner et al. 1986;
Schöpf & Zimmermann 1993; Barten et al. 1995). This is also the case in magnetic
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Stabilizing

∖
Destabilizing Convection Differential rotation

Rotation Prandtl ν/κT 6 0.67 ν/ν = 1 (marginal)
Density gradient Lewis κC/κT 6 1(a) Schmidt ν/κC > 1.44
Magnetic field Roberts η/κT 6 1 ν/η > 1(a)

Table 1. Criteria for oscillatory onset of instability for different analogous systems. Stabilizing
and destabilizing control parameters are in columns and rows, respectively. Diffusion coefficients:
ν = kinematic viscosity, κT = thermal diffusivity, κC = chemical diffusivity, η = magnetic viscosity.
For references see text. (a) The value 1 is an estimation, not an analytical result.

Taylor–Couette flow (Chang & Sartory 1967) and as we show, in stably stratified
Taylor–Couette flow. The case of contra-rotating Taylor–Couette flow (Andereck et
al. 1986) is marginal since the typical time scales are equal.

The analytical threshold for an oscillatory instability has been calculated for rotating
convection, magnetoconvection (Chandrasekhar 1961), and now in stratified Taylor–
Couette (3.22). Note that in the case of magnetoconvection, the above physical argu-
ment gives the theoretical value. In table 1 we summarize the criteria for oscillatory
onset of instability for all these systems.

In all these systems, when the oscillatory onset of instability is satisfied, one should
expect a global bifurcation as the secondary bifurcation. Indeed, if stationary non-
axisymmetric structures are stable, they cannot connect to the oscillatory state through
a local bifurcation. The existence of a global bifurcation in these systems should also
lead to an early appearance of weak turbulence as pointed out by Rucklidge (1994)
and Mullin (1993), and observed in our system.

5.3. Conclusion

We provide in this paper the first experimental evidence of the existence of a novel bi-
furcation scenario in hydrodynamics for an extended system. Adding an independent
stabilizing control parameter (stable density stratification) to the well-known Taylor–
Couette flow with only the inner cylinder rotating (unstable stratification of angular
momentum) changes radically the route to chaos. The primary bifurcation does not
lead to a stationary structure as in homogeneous Taylor–Couette flow when only
the inner cylinder is rotating. The axially stratified Taylor–Couette flow bifurcates
from the purely azimuthal flow through a direct Hopf bifurcation to an axisymmetric
wave regime. Measured values for the critical rotation rate and the critical oscillation
frequency of the waves are in very good agreement with the predictions of the linear
stability analysis. The next transition, which takes the system into a state of non-
axisymmetric drifting vortices, shows hysteresis. From the characteristics of these two
states, we propose a bifurcation diagram which reconciles the previous results ob-
tained for the same stratified Taylor–Couette system. It presents a saddle-node global
bifurcation and could qualitatively hold for a large class of hydrodynamic systems.
The next regime (T) exhibits both stationary structures (similar to Taylor vortices
in homogeneous Taylor–Couette flows) and weakly turbulent structures, called spo-
radic defects. The characterization of this weak turbulence needs the simultaneous
acquisition of temporal density fluctuations and flow visualizations at the location
of the probe, in order to relate the time–frequency analysis precisely to the ‘life’ and
behaviour of such a defect. The features of the last regime studied in this article (CT)
show striking similarities with the wavy vortices regime observed in homogeneous
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Taylor–Couette flow. An energy argument is finally derived which gives some insight
into the physical reasons for the succession of the regimes for a given stratification.
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